Место работы автора, адрес/электронная почта: ФИЦ "Якутский научный центр СО РАН", Институт горного дела Севера им. Н. В. Черского ; 677000, г. Якутск, пр-т Ленина, 43 ; e-mail: igds@ysn.ru ; http://igds.ysn.ru
ID Автора: SPIN-код: 9842-9280, РИНЦ AuthorID: 1231853677980
Количество страниц: 6 с.
Cracks in the rock mass significantly affect the physical and mechanical properties of rocks, and they, in turn,must be taken into account in the planning of mining operations and construction of mining structures. There arevarious techniques for detecting cracks in the rock mass using GPR data. However, the application of these techniquesis limited by the productivity of geophysical operators, as the GPR data are mainly interpreted by them manually. Tostudy the fracturing of frozen rocks from GPR data, it is possible to use artificial neural networks (ANN), which willmake it possible to analyze GPR radarograms in order to detect discontinuities and shifts of in-phase axes of GPRsignals. A significant problem in the application of ANN is the preparation of data for training (training sample). It ispossible to create a training data set using a model of GPR section of frozen rock massif with a fracture. However,the practice of using synthetic radarograms based on the model of GPR section of frozen rock massif with a crack hasshown the need for its improvement in terms of increasing the number of rock layers, the possibility of setting inclinedboundaries, taking into account the presence of syn- and antiforms. The article describes the stages of neural networkmodel development, including the creation of a training data set, selection of architecture, training and testing of theneural network model. The validation of the ANN model showed high performance of the ANN model. Nevertheless,some drawbacks are observed in the performance of the model. The developed system will significantly reduce the timecost of GPR data interpretation. Further research will be related to improving the prediction accuracy associated withthe expansion of the training data set and development of an additional ANN model.
Соколов, К. О. Распознавание волновых образов трещин массива горных пород на основе нейронных сетей по данным георадиолокациям / Соколов К. О., Шамаев С. Д. ; Институт горного дела Севера им. Н. В. Черского // Успехи современного естествознания. - 2023, N 7. - С. 109-114. - DOI: 10.17513/use.38079
DOI: 10.17513/use.38079
Количество страниц: 4 с.
The GPR method is used to study the river ice cover, which provides operational information on ice thickness. The obtained data are visualized through the QGIS geoinformation system, which maps the spatial distribution of ice thickness. However, the system has disadvantages due to manual correction of the data. The study proposes the use of software to visualize the results more efficiently. This will help analyze the data more quickly, identifying areas of thick ice and ice-bottom contacts that could be potential obstacles to spring ice drift movement.
Шамаев, С. Д. Автоматизация обработки и визуализации данных георадиолокации для анализа характеристик ледяного покрова рек / С. Д. Шамаев, М. П. Федоров ; Институт горного дела Севера им. Н. В. Черского // Пятые Виноградовские чтения. Гидрология в эпохуперемен : сборник докладов международной научной конференции памяти выдающегося русского ученого Юрия Борисовича Виноградова, Санкт-Петербург, 5-14 октября 2023 г. / под редакцией О. М. Макарьевой, П. А. Никитиной ; [рецензент А. Ю. Виноградов]. - Санкт-Петербург : Издательство ВВМ, 2023. - 1 файл (752 с.; 52,4 Мб) : ил. - С. 742-745.
Количество страниц: 12 с.
This article presents the developed physical and geological models for the GPR method, which is currently actively used in the study of mining and geological and geocryological conditions of developed alluvial deposits in the cryolithozone. The relevance of the development of GPR models is dictated by the need to determine the features of wave fields (radargrams) for reliable data interpretation. Typical models of horizontal layered structure of the upper part of the geological section (frozen loose sediments, including those with inclusion of layer ice, paleorules) of diamondiferous placers in the subarctic zone of Yakutia are considered. Computer modeling was carried out in the gprMax system using the numerical finite difference method in the time domain. Based on its results, the GPR models containing a scheme of the geological section with a description of electrophysical properties and a synthetic radargram were built. Analysis of the results of computer modeling allowed us to determine the features of the radargram structure, parameters of GPR signals in the presence of formation ice, paleorules sections. The results of the studies have shown that the developed GPR models contribute to the improvement of signal processing procedures and the development of data interpretation features in the study of the geological structure and geocryological conditions of alluvial deposits in Yakutia (using the example of “Mayat River” Anabar district) by GPR.
Георадиолокационные модели массива горных пород субарктической зоны Якутии / Л. Л. Федорова, К. О. Соколов, Н. Д. Прудецкий, С. Д. Шамаев ; Институт горного дела Севера им. Н. В. Черского // Горный информационно-аналитический бюллетень. - 2023. - N 12-2. - C.129-140. - DOI: 10.25018/0236_1493_2023_122_0_129
DOI: 10.25018/0236_1493_2023_122_0_129
Количество страниц: 4 с.
This review-analytical paper presents the current state of GPR studies of river ice cover as one of the promising and alternative directions for spatial coverage of extended river sections. The works of many domestic and foreign researchers are devoted to various aspects of this issue. These aspects touch upon such topics as different methods of conducting both ground-based GPR studies and from an aircraft; processing and interpretation of GPR data, as well as many other topics. In the analytical part of the article, summarizing the results of the works of researchers, it should be concluded that the most accurate and complete data on the condition of the ice cover of rivers were obtained by using GPR with the antenna unit frequency ~ 400 MHz. It is also noted in the work that the issue of determining different forms of ice cover based on the results of GPR data processing is insufficiently studied in the studies.
Федоров, А. А. Аналитический обзор современного состояния георадиолокационных исследований ледяного покрова рек / Шамаев, А. А. Федоров, Т. A. Давыдова ; Институт горного дела Севера им. Н. В. Черского // Сборник трудов VI Международной конференции "Гидрометеорология и экология: достижения и перспективы развития" имени Л. Н. Карлина / MGO-2022. - Москва : Издательство "Перо", 2022.- 1 файл (270 с.; 1,7 Мб) : ил. - С. 232-235.
Количество страниц: 5 с.
Шамаев, С. Д. Разработка системы распознавания волновых образов трещин массива горных пород на основе нейронных сетей / С. Д. Шамаев, С. Д. Мордовской ; Институт математики и информатики Северо-Восточного федерального университета им. М. К. Аммосова // Аммосов - 2022 : сборник материалов республиканской научно-практической конференции студентов и магистрантов, посвященной 100-летию образования Якутской АССР, г. Якутск, 22 апреля 2022 г. / редакционная коллегия : С. И. Федоров, А. М. Захарова. - 2-е изд., доп. - Якутск : Издательский дом СВФУ, 2022. - 1 файл (987 с.; 4,4 Мб) : ил. - С. 766-770.
Количество страниц: 16 с.
- Общий отдел > Информационные технологии. Вычислительная техника,
- Математика. Естественные науки > Геология. Геологические и геофизические науки,
- НАУКА ЯКУТИИ > МАТЕМАТИКА. ЕСТЕСТВЕННЫЕ НАУКИ > Геология. Геологические и геофизические науки,
- НАУКА ЯКУТИИ > ОБЩИЙ ОТДЕЛ > Информационные технологии. Вычислительная техника.
Relevance. Rock mass cracks are fracture surfaces in rocks with no signs of shifting. They significantly affect the physical and mechanical properties of rocks, and they, in turn, must be taken into account when planning mining operations and constructing mining structures. This problem can be solved by applying artificial intelligence (AI) methods, as they are able to process large amounts of data. The purpose of the work: choice of artificial intelligence method for detecting rock mass cracks from GPR data based on an analytical review of the applied artificial intelligence methods in the processing and interpretation of geophysical measurement data. Research methodology: analytical review of the application of artificial intelligence methods in the processing of geophysical methods data. The results of the work and their scope. As a result of the study, a table has been formed showing the qualitative assessments of the four characteristics of AI methods, which make it possible to make a reasonable choice of a method for detecting rock mass cracks from GPR data. The resulting estimates of the characteristics of AI methods will be useful to a wide range of geophysicists involved in data processing and interpretation and those who want to improve the efficiency of their work. Conclusions. The review showed that artificial intelligence methods are widely used in the processing of geophysical methods data. Among the methods used, one can single out artificial neural networks, support and relevance vector machines, genetic algorithms, etc. A convolutional neural network was chosen as an artificial intelligence method for detecting rock mass cracks from GPR data, since it is most sensitive to that data type and has a high noise immunity.
Шамаев, С. Д. Применение методов искусственного интеллекта при обработке и интерпретации данных геофизических методов / С. Д. Шамаев ; Институт горного дела Севера им. Н. В. Черского // Известия Уральского государственного горного университета. - 2022, N 1 (65). - С. 86-101. - DOI: 10.21440/2307-2091-2022-1-86-101
DOI: 10.21440/2307-2091-2022-1-86-101
Количество страниц: 3 с.
- Прикладные науки. Медицина. Ветеринария. Техника. Сельское хозяйство > Инженерное дело. Техника в целом > Строительство подземных сооружений. Земляные работы,
- НАУКА ЯКУТИИ > ПРИКЛАДНЫЕ НАУКИ. МЕДИЦИНА. ТЕХНИКА. СЕЛЬСКОЕ ХОЗЯЙСТВО > Инженерное дело. Техника в целом > Строительство подземных сооружений. Земляные работы.
Шамаев, С. Д. Особенности строения ледяного покрова реки Лена в районе г. Якутска / С. Д. Шамаев, А. А. Федоров ; Институт математики и информатики Северо-Восточного федерального университета им. М. К. Аммосова, Институт горного дела Севера им. Н. В. Черского // Аммосов - 2022 : сборник материалов республиканской научно-практической конференции студентов и магистрантов, посвященной 100-летию образования Якутской АССР, г. Якутск, 22 апреля 2022 г. / редакционная коллегия : С. И. Федоров, А. М. Захарова. - 2-е изд., доп. - Якутск : Издательский дом СВФУ, 2022. - 1 файл (987 с.; 4,4 Мб) : ил. - С. 984-986.