Корзникова Елена Александровна

Место работы автора, адрес/электронная почта: Уфимский университет науки и технологий ; 450076, г. Уфа, ул. Заки Валиди, 32 ; https://uust.ru

Ученая степень, ученое звание: д-р физ.-мат. наук

Область научных интересов: Физика

ID Автора: SPIN-код: 9908-3698, РИНЦ AuthorID: 158475

Публикации 1 - 2 из 2
1.

Количество страниц: 14 с.

В работе проведено комплексное моделирование влияния ближнего порядка на механические свойства объемно-центрированных кубических высокоэнтропийных сплавов ZrTiNbV и ZrTiNbHf при сдвиговой деформации с использованием гибридного подхода молекулярной динамики и Монте-Карло. Высокоэнтропийные сплавы представляют собой новый класс материалов, получаемых путем смешивания четырех и более элементов в примерно равных долях, что обеспечивает уникальное сочетание свойств и расширяет возможности традиционного материаловедения. В последние годы особое внимание уделяется механическим свойствам и деформационным механизмам высокоэнтропийных сплавов именно с ОЦК решеткой, где ключевую роль играют винтовые дислокации, взаимодействие с атомами различных элементов и формирование ближнего порядка, способствующего упрочнению материала. Построены бикристаллические модели с различной степенью атомного упорядочения, полученной в результате МД/МК-релаксации, что позволило реализовать как хаотическое, так и кластеризованное распределение элементов. Проведен сравнительный анализ структурных изменений, эволюции дефектов и механических характеристик (в частности, предела текучести) при сдвиге. Установлено, что в сплаве ZrTiNbV формирование кластеров Nb инициирует локальные фазовые превращения ОЦК → ГПУ и снижает предел текучести, тогда как для ZrTiNbHf образование сегрегаций и нанокластеров эффективно препятствует миграции границ зерен и фазовым превращениям, что приводит к значительному повышению прочности. Полученные результаты согласуются с современными представлениями о роли ближнего порядка в упрочнении высокоэнтропийных материалов и демонстрируют, что целенаправленное управление химическим упорядочением и структурой границ зерен может быть эффективным инструментом для оптимизации механических свойств высокоэнтропийных сплавов. Работа расширяет фундаментальные знания о механизмах пластичности и разрушения в многокомпонентных сплавах, а также открывает новые перспективы для их применения в условиях высоких механических нагрузок и агрессивных сред.
In this work, a comprehensive modeling of the influence of short-range order on the mechanical properties of body-centered cubic high-entropy ZrTiNbV and ZrTiNbHf alloys under shear deformation using a hybrid molecular dynamics (MD) and Monte Carlo (MC) approach has been carried out. High-entropy alloys (HEA) are a new class of materials produced by mixing four or more elements in approximately equal proportions, providing a unique combination of properties and expanding the capabilities of traditional materials science. In recent years, special attention has been paid to the mechanical properties and deformation mechanisms of high-entropy alloys with a bcc lattice, where screw dislocations, interaction with atoms of various elements and the formation of short-range order, which contributes to the strengthening of the material, play a key role. Bicrystalline models with different degrees of atomic ordering resulting from MD/MC relaxation have been constructed, allowing for both chaotic and clustered elemental distributions. A comparative analysis of structural changes, defect evolution and mechanical properties (in particular, yield strength) under shear has been carried out. It was found that in ZrTiNbV alloy the formation of Nb clusters initiates local phase transformations BCC → HCP and reduces yield strength, whereas for ZrTiNbHf the formation of segregations and nanoclusters effectively prevents grain boundary migration and phase transformations, which leads to a significant increase in strength. The results are consistent with the current understanding of the role of near-order in the hardening of high-entropy materials and demonstrate that targeted control of chemical ordering and grain boundary structure can be an effective tool for optimizing the mechanical properties of high-entropy alloys. The work extends fundamental knowledge of plasticity and fracture mechanisms in multicomponent alloys and opens new perspectives for their application under high mechanical loads and aggressive environments.

Анализ влияния ближнего порядка на механизмы деформации при сдвиге высокоэнтропийных сплавов TiNbZrV и TiNbZrhf / А. А. Давлетбаков, Р. И. Бабичева, М. Н. Семёнова, Е. А. Корзникова ; Уфимский университет науки и технологий, Институт физики молекул и кристаллов Уфимского федерального исследовательского центра Российской академии наук, Политехнический институт (филиал) Северо-Восточного федерального университета им. М. К. Аммосова, Институт проблем сверхпластичности металлов Российскойакадемии наук // Вестник Северо-Восточного федерального университета им. М. К. Аммосова. - 2025. - Т. 22, N 3 (101). - С. 23-36. - DOI: 10.25587/2222-5404-2025-22-3-23-36
DOI: 10.25587/2222-5404-2025-22-3-23-36

2.

Количество страниц: 8 с.

Миграция точечных дефектов в металлах способствует переносу массы и энергии при пластической деформации, термообработке, облучении и т. д. В связи с этим изучение таких физических процессов нелинейной динамики кристаллической решетки металлов является актуальной задачей. В данной работе исследуется динамика 2-краудиона и процессы переноса энергии в вольфраме, направленные на понимание механизмов формирования дефектов и диссипации энергии в условиях экстремальных температур и давления. Известно, что кристаллические решетки под внешним воздействием накапливают большое количество дефектов, таких как вакансии, дислокации, границы зерен. Все эти дефекты создают поля внутренних напряжений, которые будут влиять на динамику краудионов. С использованием метода молекулярно-динамического моделирования и модели погруженного атома было изучено распространение 2-краудионов в трехмерной структуре. Основные результаты показывают, что формирование 2-краудионов происходит при критических значениях энергии возбуждения и зависит от начальной конфигурации системы, где 2-краудионы инициируют цепные процессы переноса энергии по атомной решетке. Выявлено, что глубина прохождения 2-краудиона линейно зависит от величины начальной энергии. Полученные пространственно-временные характеристики распределения энергии демонстрируют роль 2-краудионов в локальной концентрации энергии и последующей ее передаче через атомные связи, что приводит к образованию точечных дефектов. Эти результаты важны для проектирования новых радиационно-стойких материалов, поскольку помогают предсказать устойчивость материала к высокоэнергетическим воздействиям. Работа вносит вклад в понимание физических основ диссипации энергии и поведения дефектов в тугоплавких материалах, применимых в условиях термоядерного синтеза и других высокотемпературных процессов.
The migration of point defects in metals contributes to the transfer of mass and energy during plastic deformation, heat treatment, irradiation, etc. In this regard, the study of such physical processes of nonlinear dynamics of the crystal lattice of metals is an urgent task. In this paper, the dynamics of 2-crowdion and the processes of energy transfer in tungsten are studied, aimed at understanding the mechanisms of defect formation and energy dissipation under extreme temperatures and pressures. It is known that crystal lattices accumulate a large number of defects under external influence, such as vacancies, dislocations, and grain boundaries. All these defects create internal stress fields that will affect the dynamics of crowdions. Using the methods of molecular dynamic modeling and embedded atom model, the propagation of 2-crowdions in a three-dimensional structure was studied. The main results show that the formation of 2-crowdions occurs at critical values of the excitation energy and depends on the initial configuration of the system, where 2-crowdions initiate chain processes of energy transfer through the atomic lattice. It is revealed that the depth of passage of the 2-crowdion linearly depends on the magnitude of the initial energy. The obtained spatiotemporal characteristics of the energy distribution demonstrate the role of 2-crowdions in the local concentration of energy and its subsequent transfer through atomic bonds, which leads to the formation of point defects. These results are important for the design of new radiation-resistant materials, as they help predict the material’s resistance to high-energy influences. The work contributes to the understanding of the physical foundations of energy dissipation and the behavior of defects in refractory materials used in thermonuclear fusion and other high-temperature processes.

Динамика 2-краудиона и перенос энергии в вольфраме: атомистическое моделирование / Ю. Р. Шарапова, А. М. Казаков, М. Н. Семёнова [и др.] ; Уфимский университет науки и технологий, Политехнический институт (филиал) СВФУ, Институт проблем сверхпластичности металлов РАН // Вестник Северо-Восточного федерального университета им. М. К. Аммосова. - 2024. - Т. 21, N 4 (98). - С. 73-80. - DOI: 10.25587/2222-5404-2024-21-4-73-80
DOI: 10.25587/2222-5404-2024-21-4-73-80